
PARTITION

About Speaker

Shrwan Krishna Shrestha
shrwan@sqlpassnepal.org / shrwan@gmail.com

98510-50947

mailto:shrwan@gmail.com

Topics to be covered
 Partition in earlier versions

 Table Partitioning Overview

 Benefits of Partitioned Table

 Challenges

 Planning of Table Partitioning

 How to Partition a Table

 Partition and Parallel Execution

 Query Performance

 Sliding Window Scenario

 Best Practices

Partition in earlier
versions

Till SQLServer 2000 only way
to implement partition was
to created a view UNIONed
with multiple table.

Table Partition Overview
 Column based solution.

 Horizontal Partitions.

 This is a new feature that allows built-in data partitioning that handles the movement of
data without physically moving it.

 It gives an advantage of having smaller objects to manage and maintain.

 A hidden computed column is created internally to represent the ID of a table or index
partition for a specific row.

 To the users it looks like a table as we were always been using. But data are stored in
different partitions not in one large table.

Partitioned Table

Dependencies

Benefits of Partitioning
 SQL Server automatically manages the placement of data in the proper partitions.

 A partitioned table and its indexes appear as a normal database table with indexes, even
though the table might have numerous partitions.

 The table can be managed at the partition and filegroup level for ease of maintenance.

 Partitioned tables support easier and faster data loading, aging, and archiving.

 Application queries that are properly filtered on the partition column can perform better
by making use of partition elimination and parallelism.

 In cases where partitioned data will not be modified, we can mark some or most of a
partitioned table's filegroups as read-only, making management of the filegroups easier.

 In SQL Server 2008, compress can be done to individual partitions as well as control lock
escalation at a partition level.

Challenges of Partitioning
 There is a maximum of 1,000 partitions for a table.

 You must manage filegroups and file placement if you place partitions on individual
filegroups.

 The metadata-only operations (SWITCH, MERGE, and SPLIT) can be blocked by other
DML actions on the table at the time, until a schema-modification lock can be obtained.

 Managing date or time-based data can be complex.

 You cannot rebuild a partitioned index with the ONLINE option set to ON, because the
entire table will be locked during the rebuild.

 Automating changes to partitioned tables, as in a sliding window scenario, can be
difficult.

Planning for Table Partitioning
 Decide which table can benefit from the increase manageability and

availability.

 Plan on how to store the partitions in filegroups using a partition
scheme.

 Specify the partition boundaries in a partition function.

How to partition a table
 Create additional filegroups if you want to spread the partition over

multiple filegroups.

 Create a Partition Function

 Create a Partition Scheme

 Create the table using the Partition Scheme

Function
 CREATE PARTITION FUNCTION partition_function_name (

input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]]) [;]

 Left: The first value is the maximum value of the first partition.

 Right: The first value is the minimum value of the second partition.

Range Left & Right
 CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

 CREATE PARTITION FUNCTION myRangePF2 (int)
AS RANGE RIGHT FOR VALUES (1, 100, 1000);

Partition 1 2 3 4

Values col1 < 1 col1 >= 1 AND col1 < 100 col1 >= 100 AND col1 < 1000 col1 >= 1000

Partition 1 2 3 4

Values col1 <= 1 col1 > 1 AND col1 <= 100 col1 > 100 AND col1 <= 1000 col1 > 1000

Scheme
 CREATE PARTITION SCHEME partition_scheme_name

AS PARTITION partition_function_name
[ALL] TO ({ file_group_name | [PRIMARY] } [,...n])
[;]

Create Table
 CREATE TABLE

[database_name . [schema_name] . | schema_name .] table_name
({ <column_definition> | <computed_column_definition> }
[<table_constraint>] [,...n])
[ON { partition_scheme_name (partition_column_name) |
filegroup
| "default" }]
[{ TEXTIMAGE_ON { filegroup | "default" }] [;]

How to partition a table

Partition and Parallel Execution
 MAXDOP

 'max worker threads’

Number of

CPUs

32-bit

computer

64-bit

computer

<= 4 processors 256 512

8 processors 288 576

16 processors 352 704

32 processors 480 960

Parallel execution strategy

Query Performance
 It is a key benefit of table partitioning.

 Changes the way parallel and serial plans are represented.

 Enhances both compilation and run-time execution plans.

Query Performance
 Partitioned table allows partition aware seek operation.

 This is a key benefit of partitioning often called partition elimination
or partition pruning.

Query Performance
 Execution plan includes “skip scan: seek keys”

 This is a second level of seek operation thataccessess the combination
of conditions that can be satisfied by the index, in this case
SalesOrderNumber = 'SO51922'

Sliding Window Scenario
Load new data Remove old data

Sliding window scenario

Best Practice
 Make sure that the configuration of max degree of parallelism is set sufficiently high to take advantage of parallel operations, or else add a

MAXDOP query hint to fine-tune the degree of parallelism.

 Maintain an empty partition on both ends of the partitioned table and ensure that only empty partitions are split and merged in a sliding

window scenario.

 Remember that RANGE RIGHT may be more convenient than RANGE LEFT in partition functions, especially when you are specifying date

ranges.

 Use data types without fractional components as partition columns, such as a date or an integer.

 Always use a standard language-independent date format when specifying partition function boundary values.

 Use an integer-based date and date dimension in data warehouses.

 Use a single column of the table as the partitioned column whenever possible. If you must partition across more than one column, you can

use a persisted computed column as the partitioning column. But then to achieve partition elimination, you must control queries to ensure

they reference the partition column in their filters.

 Ensure that queries against the partitioned tables have filters based on the partition column.

 Use SWITCH with MERGE to drop partition data: Switch out the partition and remove the partition's boundary value using MERGE.

 Use TRUNCATE TABLE to delete partition data by switching a partition out to a staging table and truncating the staging table.

 Check for partition elimination in query plans.

 Place read only data on read-only filegroups to reduce locking and simplify recovery for piecemeal restores.

 Spread filegroups across all disks for maximum I/O performance.

 Automate sliding window scenarios using available tools.

 When possible, use a server with enough main memory to fit frequently accessed partitions or all partitions in memory to reduce I/O cost.

 If the data you query will not fit in memory, compress the tables and indexes. This will reduce I/O cost.

 Use a server with fast processors and as many processor cores as you can afford, to take advantage of parallel query processing capability.

 Ensure the server has sufficient I/O controller bandwidth.

 Create a clustered index on every large partitioned table to take advantage of B-tree scanning optimizations.

http://www.sqlpassnepal.org

ug@sqlpassnepal.org

http://www.sqlpassnepal.org/

