e

Microsoft SQLSer\

About Speaker

Shrwan Krishna Shrestha

shrwan@sqlpassnepal.org / shrwan@gmail.com

98510-50947

mailto:shrwan@gmail.com

Topics to be covered

Partition in earlier versions
Table Partitioning Overview
Benefits of Partitioned Table
Challenges

Planning of Table Partitioning
How to Partition a Table
Partition and Parallel Execution
Query Performance

Sliding Window Scenario

Best Practices

Partition in earlier
versions

Till SQLServer 2000 only way
to implement partition was
to created a view UNIONed
with multiple table.

File1
Fis1

FileZ
Fiz2

SalesJanuary

1 (010103

—{ 2 [01/01/03

0153103

SalesFebruary

02/01/03
20201703

-

n|02/28/03

YearlySales (vie

SalesDecember

-l

12/01/03
2 11201/03

1203103

—

01/01/03
—— = 2 |01/01/03

n 12131003

Partitioned Wiew
SalesJanuary
UNION ALL
SalesFebruary

R—

e
Table Partition Overview

Column based solution.
Horizontal Partitions.

This is a new feature that allows built-in data partitioning that handles the movement of
data without physically moving it.

[t gives an advantage of having smaller objects to manage and maintain.

A hidden computed column is created internally to represent the ID of a table or index
partition for a specific row.

To the users it looks like a table as we were always been using. But data are stored in
different partitions not in one large table.

Partitioned Table

llllllllllllllll

Dependencies

B
7]
-
.

i
| @
5

Hh

{ Tat
ittt
B

Benefits of Partitioning

SQL Server automatically manages the placement of data in the proper partitions.

A partitioned table and its indexes appear as a normal database table with indexes, even
though the table might have numerous partitions.

The table can be managed at the partition and filegroup level for ease of maintenance.
Partitioned tables support easier and faster data loading, aging, and archiving.

Application queries that are properly filtered on the partition column can perform better
by making use of partition elimination and parallelism.

In cases where partitioned data will not be modified, we can mark some or most of a
partitioned table's filegroups as read-only, making management of the filegroups easier.

In SQL Server 2008, compress can be done to individual partitions as well as control lock
escalation at a partition level.

Challenges of Partitioning

There is a maximum of 1,000 partitions for a table.

You must manage filegroups and file placement if you place partitions on individual
filegroups.

The metadata-only operations (SWITCH, MERGE, and SPLIT) can be blocked by other
DML actions on the table at the time, until a schema-modification lock can be obtained.

Managing date or time-based data can be complex.

You cannot rebuild a partitioned index with the ONLINE option set to ON, because the
entire table will be locked during the rebuild.

Automating changes to partitioned tables, as in a sliding window scenario, can be
difficult.

Planning for Table Partitioning

Decide which table can benefit from the increase manageability and
availability.

Plan on how to store the partitions in filegroups using a partition
scheme.

Specify the partition boundaries in a partition function.

How to partition a table

Create additional filegroups if you want to spread the partition over
multiple filegroups.

Create a Partition Function
Create a Partition Scheme

Create the table using the Partition Scheme

P

/

Function

CREATE PARTITION FUNCTION partition_function_name (

input_parameter_type)
AS RANGE [LEFT | RIGHT |
FOR VALUES ([boundary_value [,..n]])[;]

e Left: The first value is the maximum value of the first partition.
e Right: The first value is the minimum value of the second partition.

P —

Range Left & Right

CREATE PARTITION FUNCTION myRangePFi (int)
AS RANGE LEFT FOR VALUES (3, 100, 1000);

Partition

1

2

3

4

\Values

coll <=1

coll > 1 AND coll <= 100

coll > 100 AND coll <= 1000

coll > 1000

CREATE PARTITION FUNCTION myRangePF2 (int)
AS RANGE RIGHT FOR VALUES (3, 100, 1000);

Partition

1

2

3

4

\Values

coll < 1

coll >= 1 AND coll < 100

coll >= 100 AND coll < 1000

coll >= 1000

// e
Scheme

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL | TO ({ file_group_name | [PRIMARY] } [,..n])

o

Create Table
CREATE TABLE

| database_name . [schema_name | . | schema_name . | table_name
({ <column_definition> | <computed_column_definition> }

| <table_constraint>] [,..n])

| ON { partition_scheme_name (partition_column_name) |
filegroup

"default" }]

| { TEXTIMAGE_ON { filegroup | "default" } | [; |

+ S N
e

Demo

How to partition

Partition and Parallel Execution
* MAXDOP

sp_configure 'show advanced options', 1:

GO

RECONFIGURE WITH OVERRIDE:

GO

sp_configure 'max degree of parallelism', 8&:
GO

RECONFIGURE WITH COVERRIDE;

col

* 'max worker threads’

Number of 32-bit 64-bit

CPUs computer computer

<= 4 processors 256 512
8 processors 288 576
16 processors 352 704

32 processors 480 960

Query Performance

It is a key benetfit of table partitioning.
Changes the way parallel and serial plans are represented.

Enhances both compilation and run-time execution plans.

uery Performance

Partitioned table allows partition aware seek operation.

This is a key benefit of partitioning often called partition elimination

or partition pruning.

SELECT =
FROM FactInternetSaiesI

WHERE OrderDateKey SETWEEN 20030402 AND 20030822

I} SaleszOrderNumber = "'35051922°'

Seek Predicates
Seek Keys[1]: Skart: PEnId1000 == Scalar Operatnr]
AL(ZanN, End: PERId1000 <= Scalar Operakari(2710,
1 Seek Keys[2]: Prefix: [Adventure\orksDW2008],
. [dbo].[FactInternetSales]. SalesOrderMumber =
Scalar Operatar(MN'S051922%

Index Seek (MonClustered)

Ackual Mumber of Rows 3

(= J

Index Seek (MonClustered)
Scan a particular range of rows Ffrom a nonclustered

indezx,
Physical Operation Index Seek
Logical Operation Index Seek
Actual Number of Rows 3
Estimated I,/0 Cost 0.015625
Estimated CPU Cost 0.0007578
Estimated Operator Cost 00164128 (72%)
Estimated Subtree Cost 00164125
. Estimated Number of Rows 2.52273
. Estimated Row Size 35 B
Actual Rebinds 1]
Actual Rewinds i
[Partitioned True
Actual Partition Count 5
“Oraereq Trae |
Mode ID 1

Query Performance

Execution plan includes “skip scan: seek keys”

This is a second level of seek operation thataccessess the combination

of conditions that can be satisfied by the index, in this case
SalesOrderNumber = 'SO51922'

SELECT *

FROM FactInternetSaiesI
Index Seek (MonClustered)

WHEERE OrderDateRey SZEIWEEN 20030402 ZND 20030822 .
Scan a particular range of rows From a nonclustered
I} SalezOrderNumber = '3051%22° indes,

seek Predicates Physical Operation Index Seek
Seek Kews[1]: Skart: PonId1000 »= Scalar Operator Logical Operation Index Seek
. = Actual Number of Rows 3
Seek Keys[2]: Prefix: [AdventureorksDWw2008], Estimated I,/0 Cost 0.015625
[dbo].[FactInternetsales], SalesOrderMumber = Estimated CPU Cost 0.0007373
Scalar Operakor(WN'S051922% Estimated Operator Cost 00164128 (72%)
Estimated Subtree Cost 00164128
. Estimated Mumber of Rows 252273
Index Seek {(NonClustered) | e e 5B
Actual Rebinds 1]
Actual Rewinds i

TPartitioned True
Actual Mumber of Rows 3 Actual Partition Count 5
I] “Orderea TFE]

Mode ID 1

Sliding Window Scenario

Load new data Remove old data
P P
e gy | — |
|
| | Partition 1 | Partition 2 | Partition 3 | Partition 4 | Partition 5 } i | Partition 1 | Partition 2 | Partition 3 | Partition 4 | Partition 5
1l (Empty) (Data) {Data) (Empty) (Empty) || 'l (Empty) (Data) (Data) (Data) (Empty)
S | S S
S S
Staging Staging
(Data) [Lo (Empty)

b P
Ty]
I | I
} Partition 1 Partition 2 | Partiion 3 | Partition 4 | Partition 5 : } Partition 1 Partition 2 | Partiion 3 | Partition 4 | Partition 5
Il (Empty) (Data) {Data) {Data) {(Empty) ! i1 (Empty) (Empty) (Data) (Data) (Empty)

t | %
T g— SWITCH t g SWITCH
S Stagin s
Staging {Dgza?
(Empty)

+ S N
e

Demo

Sliding window s

est Practice

Make sure that the configuration of max degree of parallelism is set sufficiently high to take advantage of parallel operations, or else add a
MAXDOP query hint to fine-tune the degree of parallelism.

Maintain an empty partition on both ends of the partitioned table and ensure that only empty partitions are split and merged in a sliding
window scenario.

Remember that RANGE RIGHT may be more convenient than RANGE LEFT in partition functions, especially when you are specifying date
ranges.

Use data types without fractional components as partition columns, such as a date or an integer.
Always use a standard language-independent date format when specifying partition function boundary values.
Use an integer-based date and date dimension in data warehouses.

Use a single column of the table as the partitioned column whenever possible. If you must partition across more than one column, you can
use a persisted computed column as the partitioning column. But then to achieve partition elimination, you must control queries to ensure
they reference the partition column in their filters.

Ensure that queries against the partitioned tables have filters based on the partition column.

Use SWITCH with MERGE to drop partition data: Switch out the partition and remove the partition's boundary value using MERGE.

Use TRUNCATE TABLE to delete partition data by switching a partition out to a staging table and truncating the staging table.

Check for partition elimination in query plans.

Place read only data on read-only filegroups to reduce locking and simplify recovery for piecemeal restores.

Spread filegroups across all disks for maximum I/O performance.

Automate sliding window scenarios using available tools.

When possible, use a server with enough main memory to fit frequently accessed partitions or all partitions in memory to reduce I/O cost.
If the data you query will not fit in memory, compress the tables and indexes. This will reduce I/O cost.

Use a server with fast processors and as many processor cores as you can afford, to take advantage of parallel query processing capability.
Ensure the server has sufficient I/O controller bandwidth.

Create a clustered index on every large partitioned table to take advantage of B-tree scanning optimizations.

http://www.sqlpassnepal.org/

