
PARTITION

About Speaker

Shrwan Krishna Shrestha
shrwan@sqlpassnepal.org / shrwan@gmail.com

98510-50947

mailto:shrwan@gmail.com

Topics to be covered
 Partition in earlier versions

 Table Partitioning Overview

 Benefits of Partitioned Table

 Challenges

 Planning of Table Partitioning

 How to Partition a Table

 Partition and Parallel Execution

 Query Performance

 Sliding Window Scenario

 Best Practices

Partition in earlier
versions

Till SQLServer 2000 only way
to implement partition was
to created a view UNIONed
with multiple table.

Table Partition Overview
 Column based solution.

 Horizontal Partitions.

 This is a new feature that allows built-in data partitioning that handles the movement of
data without physically moving it.

 It gives an advantage of having smaller objects to manage and maintain.

 A hidden computed column is created internally to represent the ID of a table or index
partition for a specific row.

 To the users it looks like a table as we were always been using. But data are stored in
different partitions not in one large table.

Partitioned Table

Dependencies

Benefits of Partitioning
 SQL Server automatically manages the placement of data in the proper partitions.

 A partitioned table and its indexes appear as a normal database table with indexes, even
though the table might have numerous partitions.

 The table can be managed at the partition and filegroup level for ease of maintenance.

 Partitioned tables support easier and faster data loading, aging, and archiving.

 Application queries that are properly filtered on the partition column can perform better
by making use of partition elimination and parallelism.

 In cases where partitioned data will not be modified, we can mark some or most of a
partitioned table's filegroups as read-only, making management of the filegroups easier.

 In SQL Server 2008, compress can be done to individual partitions as well as control lock
escalation at a partition level.

Challenges of Partitioning
 There is a maximum of 1,000 partitions for a table.

 You must manage filegroups and file placement if you place partitions on individual
filegroups.

 The metadata-only operations (SWITCH, MERGE, and SPLIT) can be blocked by other
DML actions on the table at the time, until a schema-modification lock can be obtained.

 Managing date or time-based data can be complex.

 You cannot rebuild a partitioned index with the ONLINE option set to ON, because the
entire table will be locked during the rebuild.

 Automating changes to partitioned tables, as in a sliding window scenario, can be
difficult.

Planning for Table Partitioning
 Decide which table can benefit from the increase manageability and

availability.

 Plan on how to store the partitions in filegroups using a partition
scheme.

 Specify the partition boundaries in a partition function.

How to partition a table
 Create additional filegroups if you want to spread the partition over

multiple filegroups.

 Create a Partition Function

 Create a Partition Scheme

 Create the table using the Partition Scheme

Function
 CREATE PARTITION FUNCTION partition_function_name (

input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]]) [;]

 Left: The first value is the maximum value of the first partition.

 Right: The first value is the minimum value of the second partition.

Range Left & Right
 CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

 CREATE PARTITION FUNCTION myRangePF2 (int)
AS RANGE RIGHT FOR VALUES (1, 100, 1000);

Partition 1 2 3 4

Values col1 < 1 col1 >= 1 AND col1 < 100 col1 >= 100 AND col1 < 1000 col1 >= 1000

Partition 1 2 3 4

Values col1 <= 1 col1 > 1 AND col1 <= 100 col1 > 100 AND col1 <= 1000 col1 > 1000

Scheme
 CREATE PARTITION SCHEME partition_scheme_name

AS PARTITION partition_function_name
[ALL] TO ({ file_group_name | [PRIMARY] } [,...n])
[;]

Create Table
 CREATE TABLE

[database_name . [schema_name] . | schema_name .] table_name
({ <column_definition> | <computed_column_definition> }
[<table_constraint>] [,...n])
[ON { partition_scheme_name (partition_column_name) |
filegroup
| "default" }]
[{ TEXTIMAGE_ON { filegroup | "default" }] [;]

How to partition a table

Partition and Parallel Execution
 MAXDOP

 'max worker threads’

Number of

CPUs

32-bit

computer

64-bit

computer

<= 4 processors 256 512

8 processors 288 576

16 processors 352 704

32 processors 480 960

Parallel execution strategy

Query Performance
 It is a key benefit of table partitioning.

 Changes the way parallel and serial plans are represented.

 Enhances both compilation and run-time execution plans.

Query Performance
 Partitioned table allows partition aware seek operation.

 This is a key benefit of partitioning often called partition elimination
or partition pruning.

Query Performance
 Execution plan includes “skip scan: seek keys”

 This is a second level of seek operation thataccessess the combination
of conditions that can be satisfied by the index, in this case
SalesOrderNumber = 'SO51922'

Sliding Window Scenario
Load new data Remove old data

Sliding window scenario

Best Practice
 Make sure that the configuration of max degree of parallelism is set sufficiently high to take advantage of parallel operations, or else add a

MAXDOP query hint to fine-tune the degree of parallelism.

 Maintain an empty partition on both ends of the partitioned table and ensure that only empty partitions are split and merged in a sliding

window scenario.

 Remember that RANGE RIGHT may be more convenient than RANGE LEFT in partition functions, especially when you are specifying date

ranges.

 Use data types without fractional components as partition columns, such as a date or an integer.

 Always use a standard language-independent date format when specifying partition function boundary values.

 Use an integer-based date and date dimension in data warehouses.

 Use a single column of the table as the partitioned column whenever possible. If you must partition across more than one column, you can

use a persisted computed column as the partitioning column. But then to achieve partition elimination, you must control queries to ensure

they reference the partition column in their filters.

 Ensure that queries against the partitioned tables have filters based on the partition column.

 Use SWITCH with MERGE to drop partition data: Switch out the partition and remove the partition's boundary value using MERGE.

 Use TRUNCATE TABLE to delete partition data by switching a partition out to a staging table and truncating the staging table.

 Check for partition elimination in query plans.

 Place read only data on read-only filegroups to reduce locking and simplify recovery for piecemeal restores.

 Spread filegroups across all disks for maximum I/O performance.

 Automate sliding window scenarios using available tools.

 When possible, use a server with enough main memory to fit frequently accessed partitions or all partitions in memory to reduce I/O cost.

 If the data you query will not fit in memory, compress the tables and indexes. This will reduce I/O cost.

 Use a server with fast processors and as many processor cores as you can afford, to take advantage of parallel query processing capability.

 Ensure the server has sufficient I/O controller bandwidth.

 Create a clustered index on every large partitioned table to take advantage of B-tree scanning optimizations.

http://www.sqlpassnepal.org

ug@sqlpassnepal.org

http://www.sqlpassnepal.org/

